Traffic-Aware Autonomous Driving with Differentiable Traffic Simulation


Conference paper


Laura Zheng, Sanghyun Son, Ming C Lin
ICRA, 2023

Arxiv
Cite

Cite

APA   Click to copy
Zheng, L., Son, S., & Lin, M. C. (2023). Traffic-Aware Autonomous Driving with Differentiable Traffic Simulation. In ICRA.


Chicago/Turabian   Click to copy
Zheng, Laura, Sanghyun Son, and Ming C Lin. “Traffic-Aware Autonomous Driving with Differentiable Traffic Simulation.” In ICRA, 2023.


MLA   Click to copy
Zheng, Laura, et al. “Traffic-Aware Autonomous Driving with Differentiable Traffic Simulation.” ICRA, 2023.


BibTeX   Click to copy

@inproceedings{zheng2023a,
  title = {Traffic-Aware Autonomous Driving with Differentiable Traffic Simulation},
  year = {2023},
  author = {Zheng, Laura and Son, Sanghyun and Lin, Ming C},
  booktitle = {ICRA}
}

[Picture]
We can solve autonomous traffic control problems more effectively with differentiable traffic simulation.
While there have been advancements in autonomous driving control and traffic simulation, there have been little to no works exploring the unification of both with deep learning. Works in both areas seem to focus on entirely different exclusive problems, yet traffic and driving have inherent semantic relations in the real world. In this paper, we present a generalizable distillation-style method for traffic-informed imitation learning that directly optimizes a autonomous driving policy for the overall benefit of faster traffic flow and lower energy consumption. We capitalize on improving the arbitrarily defined supervision of speed control in imitation learning systems, as most driving research focus on perception and steering. Moreover, our method addresses the lack of co-simulation between traffic and driving simulators and lays groundwork for directly involving traffic simulation with autonomous driving in future work. Our results show that, with information from traffic simulation involved in supervision of imitation learning methods, an autonomous vehicle can learn how to accelerate in a fashion that is beneficial for traffic flow and overall energy consumption for all nearby vehicles.